# Randomness in the values of quadratic polynomials mod 1

- Date: 3/22/2017 at 10:15 AM
- Location: Ångströmlaboratoriet, Lägerhyddsvägen 1 64119
- Lecturer: Jens Marklof (University of Bristol)
- Contact person: Andreas Strömbergsson
- Seminarium

DNA seminar (dynamical systems, number theory and analysis)

Abstract: It is an open question whether the fractional parts of nonlinear polynomials at integers have the same fine-scale statistics as a Poisson point process. Most results towards an affirmative answer have so far been restricted to almost sure convergence in the space of polynomials of a given degree. We will here provide explicit Diophantine conditions on the coefficients of polynomials of degree 2, under which the convergence of an averaged pair correlation density can be established. The limit is consistent with the Poisson distribution. Since quadratic polynomials at integers represent the energy levels of a class of integrable quantum systems, our findings provide further evidence for the Berry-Tabor conjecture in the theory of quantum chaos. Joint work with Nadav Yesha (Kings College London).